Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.392
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1308362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476167

RESUMO

Infectious peritonitis is a leading cause of peritoneal functional impairment and a primary factor for therapy discontinuation in peritoneal dialysis (PD) patients. Although bacterial infections are a common cause of peritonitis episodes, emerging evidence suggests a role for viral pathogens. Toll-like receptors (TLRs) specifically recognize conserved pathogen-associated molecular patterns (PAMPs) from bacteria, viruses, and fungi, thereby orchestrating the ensuing inflammatory/immune responses. Among TLRs, TLR3 recognizes viral dsRNA and triggers antiviral response cascades upon activation. Epigenetic regulation, mediated by histone deacetylase (HDAC), has been demonstrated to control several cellular functions in response to various extracellular stimuli. Employing epigenetic target modulators, such as epidrugs, is a current therapeutic option in several cancers and holds promise in treating viral diseases. This study aims to elucidate the impact of TLR3 stimulation on the plasticity of human mesothelial cells (MCs) in PD patients and to investigate the effects of HDAC1-3 inhibition. Treatment of MCs from PD patients with the TLR3 agonist polyinosinic:polycytidylic acid (Poly(I:C)), led to the acquisition of a bona fide mesothelial-to-mesenchymal transition (MMT) characterized by the upregulation of mesenchymal genes and loss of epithelial-like features. Moreover, Poly(I:C) modulated the expression of several inflammatory cytokines and chemokines. A quantitative proteomic analysis of MCs treated with MS-275, an HDAC1-3 inhibitor, unveiled altered expression of several proteins, including inflammatory cytokines/chemokines and interferon-stimulated genes (ISGs). Treatment with MS-275 facilitated MMT reversal and inhibited the interferon signature, which was associated with reduced STAT1 phosphorylation. However, the modulation of inflammatory cytokine/chemokine production was not univocal, as IL-6 and CXCL8 were augmented while TNF-α and CXCL10 were decreased. Collectively, our findings underline the significance of viral infections in acquiring a mesenchymal-like phenotype by MCs and the potential consequences of virus-associated peritonitis episodes for PD patients. The observed promotion of MMT reversal and interferon response inhibition by an HDAC1-3 inhibitor, albeit without a general impact on inflammatory cytokine production, has translational implications deserving further analysis.


Assuntos
Benzamidas , Interferon Tipo I , Peritonite , Piridinas , Viroses , Humanos , Interferon Tipo I/metabolismo , Receptor 3 Toll-Like/metabolismo , Epigênese Genética , Proteômica , Citocinas/metabolismo , Quimiocinas/metabolismo , Poli I-C/farmacologia , Receptores Toll-Like/metabolismo , Viroses/genética , Fenótipo , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo
2.
Viruses ; 16(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38399958

RESUMO

The ongoing arms race between viruses and their hosts is constantly evolving. One of the ways in which cells defend themselves against invading viruses is by using restriction factors (RFs), which are cell-intrinsic antiviral mechanisms that block viral replication and transcription. Recent research has identified a specific group of RFs that belong to the cellular epigenetic machinery and are able to restrict the gene expression of certain viruses. These RFs can be referred to as epigenetic restriction factors or eRFs. In this review, eRFs have been classified into two categories. The first category includes eRFs that target viral chromatin. So far, the identified eRFs in this category include the PML-NBs, the KRAB/KAP1 complex, IFI16, and the HUSH complex. The second category includes eRFs that target viral RNA or, more specifically, the viral epitranscriptome. These epitranscriptomic eRFs have been further classified into two types: those that edit RNA bases-adenosine deaminase acting on RNA (ADAR) and pseudouridine synthases (PUS), and those that covalently modify viral RNA-the N6-methyladenosine (m6A) writers, readers, and erasers. We delve into the molecular machinery of eRFs, their role in limiting various viruses, and the mechanisms by which viruses have evolved to counteract them. We also examine the crosstalk between different eRFs, including the common effectors that connect them. Finally, we explore the potential for new discoveries in the realm of epigenetic networks that restrict viral gene expression, as well as the future research directions in this area.


Assuntos
Viroses , Vírus , Humanos , Viroses/genética , Replicação Viral , Vírus/genética , RNA Viral , Epigênese Genética
3.
PLoS Pathog ; 20(2): e1012061, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38416782

RESUMO

Alternative polyadenylation (APA) is a widespread mechanism of gene regulation that generates mRNA isoforms with alternative 3' untranslated regions (3' UTRs). Our previous study has revealed the global 3' UTR shortening of host mRNAs through APA upon viral infection. However, how the dynamic changes in the APA landscape occur upon viral infection remains largely unknown. Here we further found that, the reduced protein abundance of CPSF6, one of the core 3' processing factors, promotes the usage of proximal poly(A) sites (pPASs) of many immune related genes in macrophages and fibroblasts upon viral infection. Shortening of the 3' UTR of these transcripts may improve their mRNA stability and translation efficiency, leading to the promotion of type I IFN (IFN-I) signalling-based antiviral immune responses. In addition, dysregulated expression of CPSF6 is also observed in many immune related physiological and pathological conditions, especially in various infections and cancers. Thus, the global APA dynamics of immune genes regulated by CPSF6, can fine-tune the antiviral response as well as the responses to other cellular stresses to maintain the tissue homeostasis, which may represent a novel regulatory mechanism for antiviral immunity.


Assuntos
Poliadenilação , Viroses , Fatores de Poliadenilação e Clivagem de mRNA , Humanos , Regiões 3' não Traduzidas/genética , Regulação para Baixo , Imunidade/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Viroses/genética , Camundongos , Animais
4.
Biosci Rep ; 44(3)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38372298

RESUMO

Septin proteins are a subfamily of closely related GTP-binding proteins conserved in all species except for higher plants and perform essential biological processes. Septins self-assemble into heptameric or octameric complexes and form higher-order structures such as filaments, rings, or gauzes by end-to-end binding. Their close association with cell membrane components makes them central in regulating critical cellular processes. Due to their organisation and properties, septins function as diffusion barriers and are integral in providing scaffolding to support the membrane's curvature and stability of its components. Septins are also involved in vesicle transport and exocytosis through the plasma membrane by co-localising with exocyst protein complexes. Recently, there have been emerging reports of several human and animal diseases linked to septins and abnormalities in their functions. Most of our understanding of the significance of septins during microbial diseases mainly pertains to their roles in bacterial infections but not viruses. This present review focuses on the known roles of septins in host-viral interactions as detailed by various studies.


Assuntos
Septinas , Viroses , Animais , Humanos , Septinas/genética , Septinas/metabolismo , Proteínas de Ligação ao GTP , Citoesqueleto/metabolismo , Citoplasma/metabolismo , Viroses/genética
5.
PLoS Biol ; 22(1): e3002089, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38236818

RESUMO

Viral respiratory infections are an important public health concern due to their prevalence, transmissibility, and potential to cause serious disease. Disease severity is the product of several factors beyond the presence of the infectious agent, including specific host immune responses, host genetic makeup, and bacterial coinfections. To understand these interactions within natural infections, we designed a longitudinal cohort study actively surveilling respiratory viruses over the course of 19 months (2016 to 2018) in a diverse cohort in New York City. We integrated the molecular characterization of 800+ nasopharyngeal samples with clinical data from 104 participants. Transcriptomic data enabled the identification of respiratory pathogens in nasopharyngeal samples, the characterization of markers of immune response, the identification of signatures associated with symptom severity, individual viruses, and bacterial coinfections. Specific results include a rapid restoration of baseline conditions after infection, significant transcriptomic differences between symptomatic and asymptomatic infections, and qualitatively similar responses across different viruses. We created an interactive computational resource (Virome Data Explorer) to facilitate access to the data and visualization of analytical results.


Assuntos
Coinfecção , Viroses , Vírus , Humanos , Coinfecção/genética , Viroma , Estudos Longitudinais , Vírus/genética , Viroses/genética , Viroses/epidemiologia , Bactérias/genética , Perfilação da Expressão Gênica
6.
Virus Res ; 341: 199314, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211734

RESUMO

The CRISPR/Cas system, identified as a type of bacterial adaptive immune system, have attracted significant attention due to its remarkable ability to precisely detect and eliminate foreign genetic material and nucleic acids. Expanding upon these inherent capabilities, recent investigations have unveiled the potential of reprogrammed CRISPR/Cas 9, 12, and 13 systems for treating viral infections associated with human diseases, specifically targeting DNA and RNA viruses, respectively. Of particular interest is the RNA virus responsible for the recent global outbreak of coronavirus disease 2019 (COVID-19), which presents a substantial public health risk, coupled with limited efficacy of current prophylactic and therapeutic techniques. In this regard, the utilization of CRISPR/Cas technology offers a promising gene editing approach to overcome the limitations of conventional methods in managing viral infections. This comprehensive review provides an overview of the latest CRISPR/Cas-based therapeutic and vaccine strategies employed to combat human viral infections. Additionally, we discuss significant challenges and offer insights into the future prospects of this cutting-edge gene editing technology.


Assuntos
Vírus de RNA , Vacinas , Viroses , Vírus , Humanos , Sistemas CRISPR-Cas , Edição de Genes/métodos , Vírus/genética , Viroses/prevenção & controle , Viroses/genética , Vírus de RNA/genética
7.
PLoS Pathog ; 20(1): e1011366, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38190406

RESUMO

C. elegans is a free-living nematode that is widely used as a small animal model for studying fundamental biological processes and disease mechanisms. Since the discovery of the Orsay virus in 2011, C. elegans also holds the promise of dissecting virus-host interaction networks and innate antiviral immunity pathways in an intact animal. Orsay virus primarily targets the worm intestine, causing enlarged intestinal lumen as well as visible changes to infected cells such as liquefaction of cytoplasm and convoluted apical border. Previous studies of Orsay virus identified that C. elegans is able to mount antiviral responses by DRH-1/RIG-I mediated RNA interference and Intracellular Pathogen Response, a uridylyltransferase that destabilizes viral RNAs by 3' end uridylation, and ubiquitin protein modifications and turnover. To comprehensively search for novel antiviral pathways in C. elegans, we performed genome-wide RNAi screens by bacterial feeding using existing bacterial RNAi libraries covering 94% of the entire genome. Out of the 106 potential antiviral gene hits identified, we investigated those in three new pathways: collagens, actin remodelers, and epigenetic regulators. By characterizing Orsay virus infection in RNAi and mutant worms, our results indicate that collagens likely form a physical barrier in intestine cells to inhibit viral infection by preventing Orsay virus entry. Furthermore, evidence suggests that actin remodeling proteins (unc-34, wve-1 and wsp-1) and chromatin remodelers (nurf-1 and isw-1) exert their antiviral activities by regulating the intestinal actin (act-5), a critical component of the terminal web which likely function as another physical barrier to prevent Orsay infection.


Assuntos
Proteínas de Caenorhabditis elegans , Viroses , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Actinas/metabolismo , Interferência de RNA , Viroses/genética , Colágeno/genética , Colágeno/metabolismo , Interações Hospedeiro-Patógeno , Proteínas do Tecido Nervoso/metabolismo
8.
PLoS Pathog ; 20(1): e1011947, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38232128

RESUMO

Microbes associated with an organism can significantly modulate its susceptibility to viral infections, but our understanding of the influence of individual microbes remains limited. The nematode Caenorhabditis elegans is a model organism that in nature inhabits environments rich in bacteria. Here, we examine the impact of 71 naturally associated bacteria on C. elegans susceptibility to its only known natural virus, the Orsay virus. Our findings reveal that viral infection of C. elegans is significantly influenced by monobacterial environments. Compared to an Escherichia coli environmental reference, the majority of tested bacteria reduced C. elegans susceptibility to viral infection. This reduction is not caused by virion degradation or poor animal nutrition by the bacteria. The repression of viral infection by the bacterial strains Chryseobacterium JUb44 and Sphingobacterium BIGb0172 does not require the RIG-I homolog DRH-1, which is known to activate antiviral responses such as RNA interference and transcriptional regulation. Our research highlights the necessity of considering natural biotic environments in viral infection studies and opens the way future research on host-microbe-virus interactions.


Assuntos
Proteínas de Caenorhabditis elegans , Viroses , Vírus , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Interferência de RNA , Viroses/genética , Vírus/metabolismo
9.
Rev Med Virol ; 34(1): e2511, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282406

RESUMO

Bat borne disease have attracted many researchers for years. The ability of the bat to host several exogenous viruses has been a focal point in research lately. The latest pandemic shifted the focus of scholars towards understanding the difference in response to viral infection between humans and bats. In a way to understand the basis of the interaction and behaviour between SARS-CoV-2 and the environment, a conflict between different researchers across the globe arose. This conflict asked many questions about the truth of virus-host integration, whether an interaction between RNA viruses and human genomes has ever been reported, the possible route and mechanism that could lead to genomic integration of viral sequences and the methods used to detect integration. This article highlights those questions and will discuss the diverse opinions of the controversy and provide examples on reported integration mechanisms and possible detection techniques.


Assuntos
COVID-19 , Quirópteros , Viroses , Animais , Humanos , SARS-CoV-2/genética , Genoma Humano , COVID-19/genética , Viroses/genética , Genoma Viral , Filogenia
10.
Nucleic Acids Res ; 52(D1): D1315-D1326, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37870452

RESUMO

Human endogenous retroviruses (HERVs), as remnants of ancient exogenous retrovirus infected and integrated into germ cells, comprise ∼8% of the human genome. These HERVs have been implicated in numerous diseases, and extensive research has been conducted to uncover their specific roles. Despite these efforts, a comprehensive source of HERV-disease association still needs to be added. To address this gap, we introduce the HervD Atlas (https://ngdc.cncb.ac.cn/hervd/), an integrated knowledgebase of HERV-disease associations manually curated from all related published literature. In the current version, HervD Atlas collects 60 726 HERV-disease associations from 254 publications (out of 4692 screened literature), covering 21 790 HERVs (21 049 HERV-Terms and 741 HERV-Elements) belonging to six types, 149 diseases and 610 related/affected genes. Notably, an interactive knowledge graph that systematically integrates all the HERV-disease associations and corresponding affected genes into a comprehensive network provides a powerful tool to uncover and deduce the complex interplay between HERVs and diseases. The HervD Atlas also features a user-friendly web interface that allows efficient browsing, searching, and downloading of all association information, research metadata, and annotation information. Overall, the HervD Atlas is an essential resource for comprehensive, up-to-date knowledge on HERV-disease research, potentially facilitating the development of novel HERV-associated diagnostic and therapeutic strategies.


Assuntos
Retrovirus Endógenos , Bases de Conhecimento , Viroses , Humanos , Viroses/genética , Viroses/virologia , Atlas como Assunto , Uso da Internet
11.
Biomed Pharmacother ; 170: 115978, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056234

RESUMO

Viral infections present significant challenges to human health, underscoring the importance of understanding the immune response for effective therapeutic strategies. Immune cell activation leads to dynamic changes in gene expression. Numerous studies have demonstrated the crucial role of long noncoding RNAs (lncRNAs) in immune activation and disease processes, including viral infections. This review provides a comprehensive overview of lncRNAs expressed in immune cells, including CD8 T cells, CD4 T cells, B cells, monocytes, macrophages, dendritic cells, and granulocytes, during both acute and chronic viral infections. LncRNA-mediated gene regulation encompasses various mechanisms, including the modulation of viral replication, the establishment of latency, activation of interferon pathways and other critical signaling pathways, regulation of immune exhaustion and aging, and control of cytokine and chemokine production, as well as the modulation of interferon-stimulated genes. By highlighting specific lncRNAs in different immune cell types, this review enhances our understanding of immune responses to viral infections from a lncRNA perspective and suggests potential avenues for exploring lncRNAs as therapeutic targets against viral diseases.


Assuntos
RNA Longo não Codificante , Viroses , Humanos , RNA Longo não Codificante/genética , Imunidade Inata , Viroses/genética , Interferons , Citocinas
12.
Rev Med Virol ; 34(1): e2488, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37921610

RESUMO

Bat-borne viruses have attracted considerable research, especially in relation to the Covid-19 pandemic. Although bats can carry multiple zoonotic viruses that are lethal to many mammalian species, they appear to be asymptomatic to viral infection despite the high viral loads contained in their bodies. There are several differences between bats and other mammals. One of the major differences between bats and other mammals is the bats' ability to fly, which is believed to have induced evolutionary changes. It may have also favoured them as suitable hosts for viruses. This is related to their tolerance to viral infection. Innate immunity is the first line of defence against viral infection, but bats have metamorphosed the type of responses induced by innate immunity factors such as interferons. The expression patterns of interferons differ, as do those of interferon-related genes such as interferon regulatory factors and interferon-stimulated genes that contribute to the antiviral response of infected cells. In addition, the signalling pathways related to viral infection and immune responses have been subject to evolutionary changes, including mutations compared to their homologues in other mammals and gene selection. This article discusses the differences in the interferon-mediated antiviral response in bats compared to that of other mammals and how these differences are correlated to viral tolerance in bats. The effect of bat interferons related genes on human antiviral response against bat-borne viruses is also discussed.


Assuntos
Quirópteros , Viroses , Vírus , Animais , Humanos , Linhagem Celular , Pandemias , Interferons/genética , Viroses/tratamento farmacológico , Viroses/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/metabolismo , Genômica
13.
Subcell Biochem ; 106: 403-439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38159236

RESUMO

Human endogenous retroviruses (HERVs), which are conserved sequences of ancient retroviruses, are widely distributed in the human genome. Although most HERVs have been rendered inactive by evolution, some have continued to exhibit important cytological functions. HERVs in the human genome perform dual functions: on the one hand, they are involved in important physiological processes such as placental development and immune regulation; on the other hand, their aberrant expression is closely associated with the pathological processes of several diseases, such as cancers, autoimmune diseases, and viral infections. HERVs can also regulate a variety of host cellular functions, including the expression of protein-coding genes and regulatory elements that have evolved from HERVs. Here, we present recent research on the roles of HERVs in viral infections and cancers, including the dysregulation of HERVs in various viral infections, HERV-induced epigenetic modifications of histones (such as methylation and acetylation), and the potential mechanisms of HERV-mediated antiviral immunity. We also describe therapies to improve the efficacy of vaccines and medications either by directly or indirectly targeting HERVs, depending on the HERV.


Assuntos
Retrovirus Endógenos , Neoplasias , Viroses , Gravidez , Humanos , Feminino , Retrovirus Endógenos/genética , Placenta , Neoplasias/genética , Epigênese Genética , Viroses/genética
14.
Sci Rep ; 13(1): 22554, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110534

RESUMO

Diagnostic limitations challenge management of clinically indistinguishable acute infectious illness globally. Gene expression classification models show great promise distinguishing causes of fever. We generated transcriptional data for a 294-participant (USA, Sri Lanka) discovery cohort with adjudicated viral or bacterial infections of diverse etiology or non-infectious disease mimics. We then derived and cross-validated gene expression classifiers including: 1) a single model to distinguish bacterial vs. viral (Global Fever-Bacterial/Viral [GF-B/V]) and 2) a two-model system to discriminate bacterial and viral in the context of noninfection (Global Fever-Bacterial/Viral/Non-infectious [GF-B/V/N]). We then translated to a multiplex RT-PCR assay and independent validation involved 101 participants (USA, Sri Lanka, Australia, Cambodia, Tanzania). The GF-B/V model discriminated bacterial from viral infection in the discovery cohort an area under the receiver operator curve (AUROC) of 0.93. Validation in an independent cohort demonstrated the GF-B/V model had an AUROC of 0.84 (95% CI 0.76-0.90) with overall accuracy of 81.6% (95% CI 72.7-88.5). Performance did not vary with age, demographics, or site. Host transcriptional response diagnostics distinguish bacterial and viral illness across global sites with diverse endemic pathogens.


Assuntos
Infecções Bacterianas , Viroses , Humanos , Viroses/diagnóstico , Viroses/genética , Biomarcadores , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/genética , Camboja , Austrália
15.
Vopr Virusol ; 68(5): 404-414, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38156574

RESUMO

INTRODUCTION: The design of studies aimed at finding the association between the genetic factor and the studied feature (disease) involves a comparison of the ratio of genotypes or allelic proportions in the study group with those in the control group. At the stage of determining the ratio of genotypes of the studied polymorphisms in the reference group, researchers meet a number of problems, which are the subject of the present work. Aim of the work is to provide scientific rationale for the feasibility of creating a national information system comprising genetic data of the relatively healthy population of Russia, incorporating its ethnic diversity. MATERIALS AND METHODS: The study group, total 1020 people, was genotyped for a number of single nucleotide polymorphisms of human genes. A comparative characteristic of the frequency distribution of the studied polymorphisms with those presented in international databases as reference data was carried out using χ2 index. RESULTS: The frequency of SNP rs4986790 of the TLR4 gene significantly differs from the EUR population (p = 0.032) and the CEU subpopulation (p = 0.047). The allele frequencies of the rs1800795 (IL6) and rs1800896 (IL10) polymorphisms in the study population differ from the CEU subgroup (p = 0.030 and 0.012, respectively). The frequency of SNP rs2295119 (HLA-DPA2) in the study group is significantly different from the EUR population (p = 0.034). CONCLUSION: The analysis carried out in this work confirms the need to create a domestic information system containing data on the occurrence of SNP alleles and genotypes for a conditionally healthy population and in subgroups with various pathological conditions.


Assuntos
Polimorfismo de Nucleotídeo Único , Viroses , Humanos , Frequência do Gene , Genótipo , Alelos , Viroses/genética , Estudos de Casos e Controles
16.
Int J Biol Sci ; 19(16): 5292-5318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928266

RESUMO

Protein arginine methyltransferase (PRMT)-mediated arginine methylation is an important post-transcriptional modification that regulates various cellular processes including epigenetic gene regulation, genome stability maintenance, RNA metabolism, and stress-responsive signal transduction. The varying substrates and biological functions of arginine methylation in cancer and neurological diseases have been extensively discussed, providing a rationale for targeting PRMTs in clinical applications. An increasing number of studies have demonstrated an interplay between arginine methylation and viral infections. PRMTs have been found to methylate and regulate several host cell proteins and different functional types of viral proteins, such as viral capsids, mRNA exporters, transcription factors, and latency regulators. This modulation affects their activity, subcellular localization, protein-nucleic acid and protein-protein interactions, ultimately impacting their roles in various virus-associated processes. In this review, we discuss the classification, structure, and regulation of PRMTs and their pleiotropic biological functions through the methylation of histones and non-histones. Additionally, we summarize the broad spectrum of PRMT substrates and explore their intricate effects on various viral infection processes and antiviral innate immunity. Thus, comprehending the regulation of arginine methylation provides a critical foundation for understanding the pathogenesis of viral diseases and uncovering opportunities for antiviral therapy.


Assuntos
Arginina , Viroses , Humanos , Metilação , Histonas/metabolismo , Regulação da Expressão Gênica , Viroses/genética
18.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003737

RESUMO

Circular RNAs (circRNAs) have been the focus of intense scientific research to understand their biogenesis, mechanisms of action and regulatory functions. CircRNAs are single stranded, covalently closed RNA molecules lacking the 5'-terminal cap and the 3'-terminal polyadenine chain, characteristics that make them very stable and resistant. Synthesised by both cells and viruses, in the past circRNAs were considered to have no precise function. Today, increasing evidence shows that circRNAs are ubiquitous, some of them are tissue- and cell-specific, and critical in multiple regulatory processes (i.e., infections, inflammation, oncogenesis, gene expression). Moreover, circRNAs are emerging as important biomarkers of viral infection and disease progression. In this review, we provided an updated overview of current understanding of virus-encoded and cellular-encoded circRNAs and their involvement in cellular pathways during viral infection.


Assuntos
Viroses , Vírus , Humanos , RNA Circular/genética , RNA/genética , Viroses/genética , Biomarcadores/metabolismo , Vírus/genética
19.
Sci Rep ; 13(1): 19541, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945588

RESUMO

Different innate immune pathways converge to Stimulator of interferon genes (STING) and trigger type I interferon responses after recognition of abnormal nucleic acids in the cells. This non-redundant function renders STING a major player in immunosurveillance, and an emerging target for cancer and infectious diseases therapeutics. Beyond somatic mutations that often occur in cancer, the human gene encoding STING protein, TMEM173 (STING1), holds great genetic heterogeneity; R232, HAQ (R71H-G230A-R293Q) and H232 are the most common alleles. Although some of these alleles are likely to be hypomorphic, their function is still debated, due to the available functional assessments, which have been performed in biased biological systems. Here, by using genetic background-matched models, we report on the functional evaluation of R232, HAQ and H232 variants on STING function, and on how these genotypes affect the susceptibility to clinically relevant viruses, thus supporting a potential contributing cause to differences in inter-individual responses to infections. Our findings also demonstrate a novel toll-like receptor-independent role of STING in modulating monocytic cell function and differentiation into macrophages. We further supported the interplay of STING1 variants and human biology by demonstrating how monocytes bearing the H232 allele were impaired in M1/M2 differentiation, interferon response and antigen presentation. Finally, we assessed the response to PD-1 inhibitor in a small cohort of melanoma patients stratified according to STING genotype. Given the contribution of the STING protein in sensing DNA viruses, bacterial pathogens and misplaced cancer DNA, these data may support the development of novel therapeutic options for infectious diseases and cancer.


Assuntos
Doenças Transmissíveis , Interferon Tipo I , Neoplasias , Viroses , Humanos , Alelos , Doenças Transmissíveis/genética , DNA , Imunidade Inata/genética , Interferon Tipo I/metabolismo , Monócitos/metabolismo , Neoplasias/genética , Viroses/genética
20.
Infect Genet Evol ; 116: 105534, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38036199

RESUMO

Israeli acute paralysis virus (IAPV) is a highly virulent, Varroa-vectored virus that is of global concern for honey bee health. Little is known about the genetic basis of honey bees to withstand infection with IAPV or other viruses. We set up and analyzed a backcross between preselected honey bee colonies of low and high IAPV susceptibility to identify quantitative trait loci (QTL) associated with IAPV susceptibility. Experimentally inoculated adult worker bees were surveyed for survival and selectively sampled for QTL analysis based on SNPs identified by whole-genome resequencing and composite interval mapping. Additionally, natural titers of other viruses were quantified in the abdomen of these workers via qPCR and also used for QTL mapping. In addition to the full dataset, we analyzed distinct subpopulations of susceptible and non-susceptible workers separately. These subpopulations are distinguished by a single, suggestive QTL on chromosome 6, but we identified numerous other QTL for different abdominal virus titers, particularly in the subpopulation that was not susceptible to IAPV. The pronounced QTL differences between the susceptible and non-susceptible subpopulations indicate either an interaction between IAPV infection and the bees' interaction with other viruses or heterogeneity among workers of a single cohort that manifests itself as IAPV susceptibility and results in distinct subgroups that differ in their interaction with other viruses. Furthermore, our results indicate that low susceptibility of honey bees to viruses can be caused by both, virus tolerance and virus resistance. QTL were partially overlapping among different viruses, indicating a mixture of shared and specific processes that control viruses. Some functional candidate genes are located in the QTL intervals, but their genomic co-localization with numerous genes of unknown function delegates any definite characterization of the underlying molecular mechanisms to future studies.


Assuntos
Dicistroviridae , Viroses , Humanos , Abelhas/genética , Animais , Locos de Características Quantitativas , Dicistroviridae/genética , Viroses/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...